New Applications of Nearest-Neighbor Chains

Nil Mamano

Committee: David Eppstein, Michael Goodrich, Sandy Irani

Collaborators: Alon Efrat, David Eppstein, Daniel Frishberg, Michael Goodrich, Stephen Kouborov, Doruk Korkmaz, Pedro Matias, Valentin Polishchuk

University of California, Irvine

When is global information necessary vs when is local information sufficient?

distributed algorithms, streaming algorithms, ... **This talk:** greedy algorithms

Outline

A property of (some) greedy algorithms: Global—Local Equivalence

An algorithm to exploit it: Nearest-Neighbor Chain Algorithm

Applications

Mutual Nearest Neighbors

Nearest Neighbor Graph

Nearest Neighbor Graph

Global—Local Equivalence

Global—Local Equivalence

Any run of Local Greedy outputs the Greedy solution

NN Data Structure

Ascending and Descending by M. C. Escher

Cycles cannot happen:

Cost of finding MNN?

Cost of finding MNN?

may need n NN queries to find **one** pair of MNN

Cost of finding MNN?

Cost of finding MNN?

Cost of finding MNN?

Cost of finding MNN?

© 2019 hayneedle.com

Pseudocode

- start the chain from any point
- until every point is matched:
 - do a NN query from the top point
 - if the NN is not in the chain: add it
 - else (the NN is the previous point in the chain):
 - remove both and match them (if the chain becomes empty, restart anywhere)

Nearest-Neighbor Chain

Nearest-Neighbor Chain

Pseudocode

- start the chain from any point
- until every point is matched:
 - do a NN query from the top point
 - if the NN is not in the chain: add it
 - else (the NN is the previous point in the chain):
 - remove both and match them
 - (if the chain becomes empty,
 - restart anywhere)

Analysis

Pseudocode

- start the chain from any point
- until every point is matched:
 - do a NN query from the top point
 - if the NN is not in the chain:
 - 🗕 add it
 - else (the NN is the previous point in the chain):
 - remove both and match them (if the chain becomes empty, restart anywhere)

Analysis

 Each point added and removed to the chain only once

Pseudocode

- start the chain from any point
- until every point is matched:
 - do a NN query from the top point
 - if the NN is not in the chain: add it
 - else (the NN is the previous point in the chain):

remove both and match them (if the chain becomes empty, restart anywhere)

Analysis

- Each point added and removed to the chain *only once*
- after each NN query: 1 point added or 2 removed

Pseudocode

- start the chain from any point
- until every point is matched:
 - do a NN query from the top point
 - if the NN is not in the chain: add it
 - else (the NN is the previous point in the chain):

remove both and match them (if the chain becomes empty, restart anywhere)

Analysis

- Each point added and removed to the chain *only once*
- after each NN query: 1 point added or 2 removed

Linear number of NN queries in total: O(nT(n))

Global—Local Equivalence

Cluster distance:

- Min. distance
- Avg. distance
- Max. distance
- Ward's distance
- Centroid distance

Benzécri, J.-P. (1982), "Construction d'une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques"

Juan, J. (1982), "Programme de classification hiérarchique par l'algorithme de la recherche en chaîne des voisins réciproques"

Gerrymandering

Algorithmic Districting

Texas road network

Stable-matching Voronoi Diagram

Voronoi diagram

Stable-matching Voronoi diagram

k-Attribute Stable Matching

k-Attribute Stable Matching

Euclidean TSP

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Tour through Arizona's major cities

Connect last two endpoints

Global–local equivalence: instead of connecting the closest pair of paths, we can connect any pair of MNN

Nearest-neighbor chain: to find the NN of a path, do a NN query from each endpoint

.........

Global–local equivalence: instead of connecting the closest pair of paths, we can connect any pair of MNN

Nearest-neighbor chain: to find the NN of a path, do a NN query from each endpoint

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAGG

GCTC CATGCT	ATAAAA	CATC ACAT	ГСААААА
	CAAAAAGGAGG TGTATCGCAGAC		FATCGCAGAC
ATCGCAGACT	GAGGA	CTGGATA	A TGGATAAA
GGATAAAACA	dirddir	CAGACTGGA	ACTGGATA
CGCAGACTG	AGGA	CACATGC	AACATCA

TGT<u>ATCGCAGAC</u>TGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

TGTATCGCAGACTGGATAAAACAT<u>CAAAAAGG</u>AGGACACATGCTCCTCGA

Set Cover

Greedy: always pick set with smallest cost-per-elem

Set Cover

Local Greedy: pick any set with a smaller cost-per-elem than any set with a common element

Combinatorial Problems

Global—Local Equivalence

- Set cover
 - Vertex cover
- Dominating set
- Matching
- Independent set

Hybrid_i:
$$l_0 \cdots l_{i-1}$$
 $g_i \cdots g_n$ Local GreedyGreedy

Hybrid_n: Local Greedy Hybrid₀: Greedy We show: Hybrid_i = Hybrid_{i+1}

D. Müllner, "Modern hierarchical, agglomerative clustering algorithms,"

1. The CP remains CP even if other MNN are picked

1. The CP remains CP even if other MNN are picked

2. MNN stay MNN until picked

2. MNN stay MNN until picked

Clustering with Centroid Distance

Clustering with Centroid Distance

GLE fails:

Clustering with Centroid Distance

GLE fails:

CP did not remain CP

Straight Skeletons

Straight Skeletons

Straight Skeletons

© 2019 GeometryFactory.com

D. Eppstein, J. Erickson, "Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions," 1998

New Results

	Prior Greedy	NNC
Euclidean TSP:	$O(n^2)$	$O(n\log n)$
Steiner TSP in planar graphs:	O(nk)	$O(n \min{(k, \sqrt{n} \log{n})})$
Motorcycle graphs:	$O(n^{4/3+\varepsilon}\log n)$	$O(n^{4/3+\varepsilon})$
1D radio tower coverage:	$O(n\log n)$	O(n)
Narcissistic k-attribute SM:	$O(n^2)$	$O(n^{2-2/(1.1+k/2)})$
Geometric Stable Matching:	$\frac{-O(n\log^7 n)}{O(n\log^4 n)}$	$\frac{-O(n\log^5 n)}{O(n\log^4 n)}$

$$\frac{-O(n\log^7 n)}{O(n\log^4 n)}$$

Find more greedy algorithms with global–local equivalence Find other ways to exploit GLE (besides NN chains) Improve the "nearest neighbor" data structures (improve the T(n) in O(nT(n)))

Papers

NM, A. Efrat, D. Eppstein, D. Frishberg, M. Goodrich, S. Kobourov, P. Matias, V. Polishchuk, "New Applications of Nearest-Neighbor Chains: Euclidean TSP and Motorcycle Graphs" ISAAC'19

G. Barequet, D. Eppstein, M.T. Goodrich, and NM, "Stable-Matching Voronoi Diagrams: Combinatorial Complexity and Algorithms," ICALP'18

D. Eppstein, M.T. Goodrich, and NM, "Reactive Proximity Data Structures for Graphs," LATIN'18 $\,$

D. Eppstein, M.T. Goodrich, D. Korkmaz, and NM, "Defining Equitable Geographic Districts in Road Networks via Stable Matching," SIGSPATIAL'17

D. Eppstein, M.T. Goodrich, and NM, "Algorithms for Stable Matching and Clustering in a Grid," IWCIA'17 $\,$

Papers

NM, A. Efrat, D. Eppstein, D. Frishberg, M. Goodrich, S. Kobourov, P. Matias, V. Polishchuk, "New Applications of Nearest-Neighbor Chains: Euclidean TSP and Motorcycle Graphs" ISAAC'19

G. Barequet, D. Eppstein, M.T. Goodrich, and NM, "Stable-Matching Voronoi Diagrams: Combinatorial Complexity and Algorithms," ICALP'18

D. Eppstein, M.T. Goodrich, and NM, "Reactive Proximity Data Structures for Graphs," LATIN'18 $\,$

D. Eppstein, M.T. Goodrich, D. Korkmaz, and NM, "Defining Equitable Geographic Districts in Road Networks via Stable Matching," SIGSPATIAL'17

D. Eppstein, M.T. Goodrich, and NM, "Algorithms for Stable Matching and Clustering in a Grid," IWCIA'17 $\,$

Thank you!