
Collaborators: Alon Efrat, David Eppstein, Daniel Frishberg, Michael

Goodrich, Stephen Kouborov, Doruk Korkmaz, Pedro Matias, Valentin

Polishchuk

New Applications of
Nearest-Neighbor Chains

Nil Mamano

University of California, Irvine

Committee: David Eppstein, Michael Goodrich, Sandy Irani



When is global information necessary vs when is
local information sufficient?

distributed algorithms, streaming algorithms, ...

This talk: greedy algorithms

Motivating question



Outline

Global—Local Equivalence

A property of (some) greedy algorithms:

Nearest-Neighbor Chain Algorithm

An algorithm to exploit it:

Applications



Greedy for Matching



Greedy for Matching

Closest pair



Greedy for Matching

1



Greedy for Matching

1

2



Greedy for Matching

1

2

3



Greedy for Matching

1

2

3

4



Greedy for Matching

1

2

3

4

5



Greedy for Matching

1

2

3

4

5



Greedy for Matching

1

2

3

4

56

7



Greedy for Matching

1

2

3

4

56

7 Greedy Ordering



Mutual Nearest Neighbors

MNN



MNN

Nearest Neighbor Graph

Nearest

neighbors



MNN

Nearest Neighbor Graph

MNN



Local Greedy



Local Greedy

1



Local Greedy

1

2



Local Greedy

1

2

3



Local Greedy

1

2

3

4



Local Greedy

1

2

3

4
5



Local Greedy

1

2

3

4
5

6



7

Local Greedy

1

2

3

4
5

6



Local Greedy

7

1

2

3

4
5

6

L.G. Ordering



Global—Local Equivalence

1

2
3

4

56

7

Greedy Ordering

7

1
2

3

4 5

6

L.G. Ordering



Global—Local Equivalence

1

2
3

4

56

7

Greedy Ordering

7

1
2

3

4 5

6

L.G. Ordering

Any run of Local Greedy outputs the Greedy solution



Nearest-Neighbor Chain Algorithm



Finding one arrow = 1 NN query

NN Data Structure



Nearest-Neighbor Chain Algorithm

Arbitrary start



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm

d1
d2

d3

d4

d1 > d2 > d3 > d4



Nearest-Neighbor Chain

Ascending and Descending by M. C.
Escher

d1 d2

d3d4

d1 > d2 > d3 > d4 > d1

Cycles cannot happen:



Nearest-Neighbor Chain

Cost of finding MNN?



Nearest-Neighbor Chain

may need n NN queries to find one pair of MNN

Cost of finding MNN?



Nearest-Neighbor Chain

Cost of finding MNN?

Do not throw away the entire chain!



Nearest-Neighbor Chain

valid chain

Cost of finding MNN?

Do not throw away the entire chain!



Nearest-Neighbor Chain

Cost of finding MNN?

Do not throw away the entire chain!



Nearest-Neighbor Chain

Cost of finding MNN?

Do not throw away the entire chain!



Nearest-Neighbor Chain

c© 2019 hayneedle.com



Nearest-Neighbor Chain

Pseudocode

• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Nearest-Neighbor Chain



Analysis

AnalysisPseudocode
• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)



Analysis

AnalysisPseudocode

• Each point added and
removed to the chain
only once

• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)



Analysis

AnalysisPseudocode

• Each point added and
removed to the chain
only once

• after each NN query:
1 point added or 2
removed

• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)



Analysis

Analysis

Linear number of NN queries in total: O(nT (n))

Pseudocode

• Each point added and
removed to the chain
only once

• after each NN query:
1 point added or 2
removed

• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)



Hierarchical Clustering



Hierarchical Clustering



Hierarchical Clustering

Each point starts in its own cluster



Hierarchical Clustering

Repeatedly merge two closest clusters

Closest pair



Hierarchical Clustering

Repeatedly merge two closest clusters



Hierarchical Clustering



Hierarchical Clustering

MNN



Hierarchical Clustering

Cluster distance:
• Min. distance
• Avg. distance
• Max. distance
• Ward’s distance
• Centroid distance

Benzécri, J.-P. (1982), “Construction d’une classification ascendante
hiérarchique par la recherche en châıne des voisins réciproques”

Juan, J. (1982), “Programme de classification hiérarchique par l’algorithme de
la recherche en châıne des voisins réciproques”

Global—Local Equivalence



Centroid Distance (no GLE)

Greedy Local Greedy

CP
MNN

CP
MNN



Centroid Distance (no GLE)

Greedy Local Greedy

cluster centroids

CP
CP



Centroid Distance (no GLE)

Greedy Local Greedy



Centroid Distance (no GLE)

Greedy Local Greedy



Stable Matching

H H H



Stable Matching

H H H



Stable Matching

A

B

C

Preferences Preferences

1 > 3 > 2

3 > 1 > 2

3 > 2 > 1

B > C > A

C > B > A

C > A > B

2

3

1



Stable Matching

A

B

C

Preferences Preferences

1 > 3 > 2

3 > 1 > 2

3 > 2 > 1

B > C > A

C > B > A

C > A > B

Blocking pair

2

3

1



Stable Matching

A

B

C

Preferences Preferences

1 > 3 > 2

3 > 1 > 2

3 > 2 > 1

B > C > A

C > B > A

C > A > B

2

3

1

Stable



Geometric Stable Matching

H

H H

H



Geometric Stable Matching

H

H H

HClosest

pair



Geometric Stable Matching

H

H H

HClosest

pair

MNN



Geometric Stable Matching

H

H H

H
NNC



Geometric Stable Matching

H

H H

H
NNC



Geometric Stable Matching

H

H H

H
NNC



Geometric Stable Matching

H

H H

H
NNC



Geometric Stable Matching

H

H H

H
NNC



Gerrymandering

reclaimtheamericandream.org

Drawn by Democrats in 2010

Drawn by Republicans in 2012

7 blue
6 red

4 blue
11 red



Algorithmic Districting

Klein et al. Balanced power diagrams for redistricting



Geometric Stable Matching

Louisiana road network



Geometric Stable Matching

Texas road network



Stable-matching Voronoi Diagram

Stable-matching Voronoi diagramVoronoi diagram



Stable k-means



Stable k-means



Stable k-means



Stable k-means



Stable k-means



Stable k-means



Stable k-means



k-Attribute Stable Matching

Intelligence

Income

~qa

For each person q:
• Attributes:
• Inclinations:

~qa
~qi

score of q for p:

~qi · ~pa



k-Attribute Stable Matching

Intelligence

Income

~qa

For each person q:
• Attributes:
• Inclinations:

~qa
~qi

score of q for p:

~qi · ~pa

Narcissistic case:

~qa = ~qi



Euclidean TSP

Tour through Arizona’s major cities



Euclidean TSP

Start with one “path” per
point

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP Multi-fragment greedy:

Connect last two
endpoints

Tour through Arizona’s major cities



Euclidean TSP Multi-fragment greedy:

Global–local equivalence: instead of connecting the closest
pair of paths, we can connect any pair of MNN

Nearest-neighbor chain: to find the NN of a path, do a NN
query from each endpoint



Euclidean TSP Multi-fragment greedy:

Global–local equivalence: instead of connecting the closest
pair of paths, we can connect any pair of MNN

Nearest-neighbor chain: to find the NN of a path, do a NN
query from each endpoint



Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA



Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAAGG
Sampling process:



Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAAGG
GCTC

TGTATCGCAGAC

GAGGA
CAGACTGGA

AGGACACATGC

GGATAAAACA

AACATCA

ACTGGATA

CAAAAAGGAGG

ACATCAAAAA

TGGATAAA

ATAAAACATC

CGCAGACTG

ATCGCAGACT

CATGCT

CTGGATAA



Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAAGG
GCTC

TGTATCGCAGAC

GAGGA
CAGACTGGA

AGGACACATGC

GGATAAAACA

AACATCA

ACTGGATA

CAAAAAGGAGG

ACATCAAAAA

TGGATAAA

ATAAAACATC

CGCAGACTG

ATCGCAGACT

CATGCT

CTGGATAA

TGTATCGCAGAC
ATCGCAGACT

“closest” pair



Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAAGG
GCTC

TGTATCGCAGAC

GAGGA
CAGACTGGA

AGGACACATGC

GGATAAAACA

AACATCA

ACTGGATA

CAAAAAGGAGG

ACATCAAAAA

TGGATAAA

ATAAAACATC

CGCAGACTG

ATCGCAGACT

CATGCT

CTGGATAA

ATCAAAAAGG

CAAAAAGGAGG

mutual “nearest
neighbors”



Set Cover

s1: 5
s2: 10

s3: 12 s4: 6

ElementsSets
a

c

d

e

b
s1

s2

s3

s4

a

c d

e

b



Set Cover

s1: 5
s2: 10

s3: 12 s4: 6

ElementsSets
a

c

d

e

b
s1

s2

s3

s4

a

c d

e

b

Greedy: always pick set with smallest cost-per-elem

cost-per-elem(si) =
weight(si)

#uncovered in si



Set Cover

s1: 5
s2: 10

s3: 12 s4: 6

ElementsSets
a

c

d

e

b
s1

s2

s3

s4

a

c d

e

b

cost-per-elem(si) =
weight(si)

#uncovered in si

Local Greedy: pick any set with a smaller cost-per-elem than
any set with a common element



Combinatorial Problems

• Set cover
– Vertex cover
• Dominating set
• Matching
• Independent set

Global—Local Equivalence



G–L Equivalence Proof

Hybridi: l0 li−1· · · gi · · · gn

Local Greedy Greedy

Hybrid0:

Hybridn: Local Greedy

Greedy

Hybridi = Hybridi+1

We show:

D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”



G–L Equivalence Proof

l0 li−1· · ·

gi+1 · · · gn

g′i+1 · · · g′n

li

gi

MNN

closest pair

Hybridi+1

Hybridi



G–L Equivalence Proof

l0 li−1· · ·

gi+1 · · · gn

g′i+1 · · · g′n

li

gi

MNN

closest pair

1. The CP remains CP even if other MNN are picked

Hybridi+1

Hybridi



G–L Equivalence Proof

1. The CP remains CP even if other MNN are picked

CP

MNN

MNN

MNN



G–L Equivalence Proof

l0 li−1· · ·

gi+1 · · · gn

g′i+1 · · · g′n

li

gi

MNN

closest pair

2. MNN stay MNN until picked

Hybridi+1

Hybridi



G–L Equivalence Proof

2. MNN stay MNN until picked

CP

MNN

MNN

MNN



G–L Equivalence Proof

Hybridi+1

Hybridi

l0 li−1· · · · · ·

g′i+1

li

gi

MNN

closest pair

g′jg′j−1· · ·

gj+1

gi+1 gi+2 gj· · ·



Clustering with Centroid Distance

Greedy Local Greedy



Clustering with Centroid Distance

CP
MNN

GLE fails:



Clustering with Centroid Distance

CP

GLE fails:

CP did not remain CP



Straight Skeletons



Straight Skeletons



Straight Skeletons

c© 2019 GeometryFactory.com



Motorcycle Graphs

D. Eppstein, J. Erickson, “Raising Roofs, Crashing Cycles, and Playing Pool:
Applications of a Data Structure for Finding Pairwise Interactions,” 1998



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



Motorcycle Graphs



New Results

Prior Greedy NNC

Geometric Stable Matching:

O(n log4 n)

O(n log7 n) O(n log5 n)

Euclidean TSP: O(n2) O(n log n)

Motorcycle graphs: O(n4/3+ε log n) O(n4/3+ε)

O(nk) O(n min (k,
√
n log n))Steiner TSP in planar graphs:

O(n log4 n)

1D radio tower coverage: O(n log n) O(n)

Narcissistic k-attribute SM: O(n2) O(n2−2/(1.1+k/2))



Research directions

Find more greedy algorithms with global–local equivalence

Find other ways to exploit GLE (besides NN chains)

Improve the “nearest neighbor” data structures

(improve the T (n) in O(nT (n)))



Papers

D. Eppstein, M.T. Goodrich, D. Korkmaz, and NM, “Defining Equitable
Geographic Districts in Road Networks via Stable Matching,” SIGSPATIAL’17

NM, A. Efrat, D. Eppstein, D. Frishberg, M. Goodrich, S. Kobourov, P. Matias,
V. Polishchuk, “New Applications of Nearest-Neighbor Chains: Euclidean TSP
and Motorcycle Graphs” ISAAC’19

D. Eppstein, M.T. Goodrich, and NM, “Algorithms for Stable Matching and
Clustering in a Grid,” IWCIA’17

D. Eppstein, M.T. Goodrich, and NM, “Reactive Proximity Data Structures for
Graphs,” LATIN’18

G. Barequet, D. Eppstein, M.T. Goodrich, and NM, “Stable-Matching Voronoi
Diagrams: Combinatorial Complexity and Algorithms,” ICALP’18



Papers

D. Eppstein, M.T. Goodrich, D. Korkmaz, and NM, “Defining Equitable
Geographic Districts in Road Networks via Stable Matching,” SIGSPATIAL’17

NM, A. Efrat, D. Eppstein, D. Frishberg, M. Goodrich, S. Kobourov, P. Matias,
V. Polishchuk, “New Applications of Nearest-Neighbor Chains: Euclidean TSP
and Motorcycle Graphs” ISAAC’19

Thank you!

D. Eppstein, M.T. Goodrich, and NM, “Algorithms for Stable Matching and
Clustering in a Grid,” IWCIA’17

D. Eppstein, M.T. Goodrich, and NM, “Reactive Proximity Data Structures for
Graphs,” LATIN’18

G. Barequet, D. Eppstein, M.T. Goodrich, and NM, “Stable-Matching Voronoi
Diagrams: Combinatorial Complexity and Algorithms,” ICALP’18


