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When is global information necessary vs when is
local information sufficient?

distributed algorithms, streaming algorithms, ...

This talk: greedy algorithms

Motivating question



Outline

Global—Local Equivalence

A property of (some) greedy algorithms:

Nearest-Neighbor Chain Algorithm

An algorithm to exploit it:

Applications
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Mutual Nearest Neighbors

MNN



MNN

Nearest Neighbor Graph
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Any run of Local Greedy outputs the Greedy solution



Nearest-Neighbor Chain Algorithm



Finding one arrow = 1 NN query

NN Data Structure



Nearest-Neighbor Chain Algorithm

Arbitrary start



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm



Nearest-Neighbor Chain Algorithm

d1
d2

d3

d4

d1 > d2 > d3 > d4



Nearest-Neighbor Chain

Ascending and Descending by M. C.
Escher

d1 d2

d3d4

d1 > d2 > d3 > d4 > d1

Cycles cannot happen:
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Cost of finding MNN?



Nearest-Neighbor Chain

may need n NN queries to find one pair of MNN

Cost of finding MNN?
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Do not throw away the entire chain!
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Cost of finding MNN?

Do not throw away the entire chain!
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Cost of finding MNN?

Do not throw away the entire chain!



Nearest-Neighbor Chain

c© 2019 hayneedle.com



Nearest-Neighbor Chain

Pseudocode

• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)
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Analysis

AnalysisPseudocode
• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:
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– else (the NN is the previous
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remove both and match them

(if the chain becomes empty,
restart anywhere)
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AnalysisPseudocode
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only once

• after each NN query:
1 point added or 2
removed

• start the chain from any point
• until every point is matched:
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– if the NN is not in the chain:

add it
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Analysis

Analysis

Linear number of NN queries in total: O(nT (n))

Pseudocode

• Each point added and
removed to the chain
only once

• after each NN query:
1 point added or 2
removed

• start the chain from any point
• until every point is matched:
– do a NN query from the top point
– if the NN is not in the chain:

add it
– else (the NN is the previous

point in the chain):
remove both and match them

(if the chain becomes empty,
restart anywhere)
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Hierarchical Clustering

Each point starts in its own cluster



Hierarchical Clustering

Repeatedly merge two closest clusters

Closest pair



Hierarchical Clustering

Repeatedly merge two closest clusters
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Hierarchical Clustering

Cluster distance:
• Min. distance
• Avg. distance
• Max. distance
• Ward’s distance
• Centroid distance

Benzécri, J.-P. (1982), “Construction d’une classification ascendante
hiérarchique par la recherche en châıne des voisins réciproques”

Juan, J. (1982), “Programme de classification hiérarchique par l’algorithme de
la recherche en châıne des voisins réciproques”

Global—Local Equivalence



Centroid Distance (no GLE)

Greedy Local Greedy

CP
MNN

CP
MNN
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Greedy Local Greedy

cluster centroids

CP
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Centroid Distance (no GLE)

Greedy Local Greedy
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Gerrymandering

reclaimtheamericandream.org

Drawn by Democrats in 2010

Drawn by Republicans in 2012

7 blue
6 red

4 blue
11 red



Algorithmic Districting

Klein et al. Balanced power diagrams for redistricting



Geometric Stable Matching

Louisiana road network



Geometric Stable Matching

Texas road network



Stable-matching Voronoi Diagram

Stable-matching Voronoi diagramVoronoi diagram
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k-Attribute Stable Matching

Intelligence

Income

~qa

For each person q:
• Attributes:
• Inclinations:

~qa
~qi

score of q for p:

~qi · ~pa



k-Attribute Stable Matching

Intelligence

Income

~qa

For each person q:
• Attributes:
• Inclinations:

~qa
~qi

score of q for p:

~qi · ~pa

Narcissistic case:

~qa = ~qi
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Tour through Arizona’s major cities



Euclidean TSP

Start with one “path” per
point

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
closest paths

Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP

Repeatedly connect the two
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Multi-fragment greedy:

Tour through Arizona’s major cities



Euclidean TSP Multi-fragment greedy:

Connect last two
endpoints

Tour through Arizona’s major cities



Euclidean TSP Multi-fragment greedy:

Global–local equivalence: instead of connecting the closest
pair of paths, we can connect any pair of MNN

Nearest-neighbor chain: to find the NN of a path, do a NN
query from each endpoint



Euclidean TSP Multi-fragment greedy:

Global–local equivalence: instead of connecting the closest
pair of paths, we can connect any pair of MNN

Nearest-neighbor chain: to find the NN of a path, do a NN
query from each endpoint
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TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA



Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAAGG
Sampling process:
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Shortest Superstring

TGTATCGCAGACTGGATAAAACATCAAAAAGGAGGACACATGCTCCTCGA

ATCAAAAAGG
GCTC

TGTATCGCAGAC

GAGGA
CAGACTGGA

AGGACACATGC

GGATAAAACA

AACATCA

ACTGGATA

CAAAAAGGAGG

ACATCAAAAA

TGGATAAA

ATAAAACATC

CGCAGACTG

ATCGCAGACT

CATGCT

CTGGATAA

ATCAAAAAGG

CAAAAAGGAGG

mutual “nearest
neighbors”
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ElementsSets
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Greedy: always pick set with smallest cost-per-elem

cost-per-elem(si) =
weight(si)

#uncovered in si



Set Cover

s1: 5
s2: 10

s3: 12 s4: 6

ElementsSets
a

c

d

e

b
s1

s2

s3

s4

a

c d

e

b

cost-per-elem(si) =
weight(si)

#uncovered in si

Local Greedy: pick any set with a smaller cost-per-elem than
any set with a common element



Combinatorial Problems

• Set cover
– Vertex cover
• Dominating set
• Matching
• Independent set

Global—Local Equivalence



G–L Equivalence Proof

Hybridi: l0 li−1· · · gi · · · gn

Local Greedy Greedy

Hybrid0:

Hybridn: Local Greedy

Greedy

Hybridi = Hybridi+1

We show:

D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
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G–L Equivalence Proof

l0 li−1· · ·

gi+1 · · · gn

g′i+1 · · · g′n

li

gi

MNN

closest pair

2. MNN stay MNN until picked

Hybridi+1

Hybridi



G–L Equivalence Proof

2. MNN stay MNN until picked

CP

MNN

MNN

MNN



G–L Equivalence Proof

Hybridi+1

Hybridi

l0 li−1· · · · · ·

g′i+1

li

gi

MNN

closest pair

g′jg′j−1· · ·

gj+1

gi+1 gi+2 gj· · ·



Clustering with Centroid Distance

Greedy Local Greedy



Clustering with Centroid Distance

CP
MNN

GLE fails:



Clustering with Centroid Distance

CP

GLE fails:

CP did not remain CP
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Straight Skeletons
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Motorcycle Graphs

D. Eppstein, J. Erickson, “Raising Roofs, Crashing Cycles, and Playing Pool:
Applications of a Data Structure for Finding Pairwise Interactions,” 1998
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New Results

Prior Greedy NNC

Geometric Stable Matching:

O(n log4 n)

O(n log7 n) O(n log5 n)

Euclidean TSP: O(n2) O(n log n)

Motorcycle graphs: O(n4/3+ε log n) O(n4/3+ε)

O(nk) O(n min (k,
√
n log n))Steiner TSP in planar graphs:

O(n log4 n)

1D radio tower coverage: O(n log n) O(n)

Narcissistic k-attribute SM: O(n2) O(n2−2/(1.1+k/2))



Research directions

Find more greedy algorithms with global–local equivalence

Find other ways to exploit GLE (besides NN chains)

Improve the “nearest neighbor” data structures

(improve the T (n) in O(nT (n)))
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